22/15(a)

The University of Sydney

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

SECOND SEMESTER EXAMINATION

NOVEMBER 2009

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY	SID	
NAME	NUMBER	
OTHER	TABLE	
NAMES	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Short answer section

	Marks			
Page	Max	Gained		Marker
11	6			
12	8			
13	6			
14	6			
15	3			
16	7			
17	4			
18	6			
19	3			
20	9			
21	4			
22	5			
23	4			
Total	71			

6

Marks • The thermite reaction is written below. Show that the heat released in this reaction is sufficient for the iron to be produced as molten metal.

$$2Al(s) + Fe_2O_3(s) \rightarrow Al_2O_3(s) + 2Fe(l)$$

Assume that the values in the table are independent of temperature.

Substance	Enthalpy of formation, $\Delta_{\rm f} H^{\rm o}$ kJ mol ⁻¹	Molar heat capacity, C_p J K ⁻¹ mol ⁻¹	Melting point °C	Enthalpy of fusion kJ mol ⁻¹
Al	0	24	660	11
Al ₂ O ₃	-1676	79	2054	109
Fe	0	25	1535	14
Fe ₂ O ₃	-824	104	1565	138

• Explain the meanings of the following terms.	Marks 8
Heat	
$P\Delta V$ work	
Internal energy	
Enthalpy change	
Entropy	
Equilibrium constant	
Reaction quotient	
Triple point	

•	A champagne bottle is filled with 750 mL atmospheric pressure when it is sealed wi inside the bottle is 6.0 atm at 20 °C. Assu and that its solubility in the wine is the sa produced by the fermentation? Data: The mole fraction solubility of CO	to of wine, leaving 10.0 mL of air at th a cork. After fermentation, the pressure ume that the gas produced is entirely CO_2 me as in water. What mass of CO_2 has been 2 in water is 7.1×10^{-4} at 293 K and 1.0 atm.	Marks 6
		Answer:	
	After the bottle has been opened and all o volume of CO_2 has escaped? Assume all	f the bubbles have been released, what the CO_2 produced escapes.	
		Answer:	

• A solution is prepared by dissolving 0.050 mol of acetic acid, 0.020 mol of sodium acetate and 0.0010 mol of HCl in water to give a final volume of 250 mL. The p <i>K</i> _a of acetic acid is 4.76. What is the pH of this solution?	Marks 3
pH =	
• Consider the following reaction. $H_2O(g) + Cl_2O(g) \iff 2HOCl(g) \qquad K_p = 0.090 \text{ at } 298 \text{ K}$	3
Calculate ΔG° (in J mol ⁻¹) for this reaction.	
$\Delta G^{\circ} =$	
Calculate the reaction quotient, Q , at 25 °C when $p(H_2O) = 18$ mmHg, $p(Cl_2O) = 2.0$ mmHg and $p(HOCl) = 0.10$ mmHg.	
<i>Q</i> =	
In which direction will the reaction proceed spontaneously at these partial pressures?	

• Explain why the freezing temperature of an aqueous salt solution is lower than that of pure water.	Marks 3
What mass of sugar (sucrose, MW 342 g mol ⁻¹) would have to be dissolved in 1.0 L of water to lower the freezing point as much as a water solution containing 11.1 g L^{-1} of CaCl ₂ ?	
Answer:	

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• A 20.0 mL solution of nitrous acid (HNO point with 24.8 mL of 0.020 M NaOH. W solution?	p_2 , p $K_a = 3.15$) was titrated to its equivalence What is the concentration of the HNO ₂	Marks 7
	Answer:	
What was the pH at the start of the titration	on?	
	pH =	
What was the pH after (a) 12.4 mL and (b	b) 24.8 mL of the NaOH had been added?	-
(a) 12.4 mL: pH =	(b) 24.8 mL: pH =	-
Qualitatively, how would each of these the had been used in place of the NaOH solution	Three pH values be affected if 0.020 M NH ₃ tion? The p K_b of NH ₃ is 4.76.	-

 The general formula for a nickel(II) chloride compound complexed with ammonia is [Ni(NH₃),]Cl₂. A 0.59 g sample of the salt was dissolved in water and the ammonia from it was titrated with 153 mL of 0.100 M HCl. What is the value of the coefficient <i>x</i>? 	4 A
Answer:	1

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

Calculate the quantity of chromium that	is deposited in this time at the electrode.	2
	Answer:	
An Ag electrode immersed in an aqueou NaCN (1.00 M) has a potential of -0.66 complex ion, [Ag(CN) ₂] ⁻ .	Is solution containing AgNO ₃ (0.010 M) and V. Calculate the stability constant of the	4
	Answer:	

• Explain the meaning of the terms ΔG , <i>n</i> , and E_{cell} in the equation	$\Delta G = -nFE_{\text{cell}}.$	Marks 3
THE REMAINDER OF THIS PAGE IS FOR ROUGH WO	ORKING ONLY.	

• Briefly describe collision theory and how it relates to the Arrhenius equation.	Marks 3
Padioactive elements are used in medicine both as tracers and to tract discusses such	3
as cancer. Describe what the ideal half-life of an element is for each application, and state the reasons for your choices.	5
	_
• Describe two alternative methods by which a colloidal suspension could be stabilised, and one by which a stable suspension could be destabilised.	3

Marks

4

• The following data were obtained for the reaction of iodine atoms in the gas phase in the presence of argon.

$2I(g) + Ar(g) \rightarrow I_2(g) + Ar(g)$										
Experiment Number	Initial [I] (M)	Initial [Ar] (M)	Initial Reaction Rate -d[I(g)]/dt (M s ⁻¹)							
1	1.0×10^{-5}	1.0×10^{-3}	$8.70 imes 10^{-4}$							
2	2.0×10^{-5}	1.0×10^{-3}	3.48×10^{-3}							
3	$2.0 imes 10^{-5}$	5.0×10^{-3}	1.74×10^{-2}							

Derive an expression for the rate law for the formation of $I_2(g)$ and calculate the value of the rate constant for this reaction.

Rate constant:

Calculate the rate of appearance of $I_2(g)$ when $[I(g)] = 1.0 \times 10^{-3}$ M and $[Ar(g)] = 1.0 \times 10^{-2}$ M.

Answer:

The solubility of BaF_2 in water is 1.30 g L ⁻¹ . Calculate the solubility product for BaF_2 .						
		Answer:				
• A mixture of NaCl	(5.0 g) and AgNO ₃ (5.0 g) was adde	d to 1.0 L of water. What are	3		
the concentrations has been established	of $Ag^+(aq)$, $Cl^-(aq)$ and ed? $K_{sp}(AgCl) = 1.8 >$	nd Na ⁺ (aq) ions < 10 ⁻¹⁰ .	in solution after equilibrium			
			1	-		

• Five strips of different metals were immersed in five different containers concentrated HCl and the following observations were made.	with Mark 4
1. In the container with the strip of Cu, no change was observed.	
2. In the container with the strip of Sn, no change was observed.	
3. In the container with the strip of Fe, a yellow colour slowly emerged at immersion.	fter
4. From the container with the strip of Zn, gas started to bubble out.	
5. In the container with the strip of Mg, a vigorous reaction was observed the strip disappeared.	and soon
Write down the reactions involved, if any occur.	
Explain these experimental observations.	
Explain how cathodic protection can prevent the corrosion of iron.	

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34}$ J s Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \, {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_e = 9.1094 \times 10^{-31}$ kg Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \, {\rm kg}$ Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 $^{\circ}$ C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Pa} = 1 \text{ N m}^{-2} = 1 \text{ kg m}^{-1} \text{ s}^{-2}$
0 °C = 273 K	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$1 L = 10^{-3} m^3$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 \text{ Å} = 10^{-10} \text{ m}$	1 tonne = 10^3 kg
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 \text{ W} = 1 \text{ J s}^{-1}$

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10^{3}	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р	10^{12}	tera	Т					

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

Standard Reduction Potentials, E°

Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+}(aq) + 2H_2O$	+0.96
$NO_3^{-}(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^- \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2H^+(aq) + 2e^- \rightarrow H_2(g)$	0 (by definition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04
$Pb^{2+}(aq) + 2e^- \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^- \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1109 - CHEMISTRY 1B LIFE SCIENCES

Useful formulas							
Quantum Chemistry	Electrochemistry						
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	Moles of $e^- = It/F$						
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$						
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$						
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$						
Acids and Bases	Gas Laws						
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT						
$pK_w = pK_a + pK_b = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$						
Radioactivity	Kinetics						
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$						
$A = \lambda N$	$k = A e^{-Ea/RT}$						
$\ln(N_0/N_t) = \lambda t$	$\ln[A] = \ln[A]_{o} - kt$						
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_{2}}{k_{1}} = \frac{E_{a}}{R} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}} \right)$						
Colligative Properties and Solutions	Thermodynamics and Equilibrium						
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
c = kp	$\Delta G^{\circ} = -RT \ln K$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R\ln K$						
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT \right)^{\Delta n}$						
Miscellaneous	Mathematics						
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
$A = \varepsilon c l$	$\ln x = 2.303 \log x$						
$E = A e^2 N$	Area of circle = πr^2						
$L = \frac{1}{4\pi\varepsilon_0 r} \frac{1}{r_A}$	Surface area of sphere = $4\pi r^2$						

1	2	3	4	5	6	7	8	9	10	11	12	2 13	14	15	16	17	18
1																	2
HYDROGEN																	HELIUM
1.008																	4.003
3	4]										5	6	7	8	9	10
	BERYLLIUM											BORO	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON
LI 6 941	Ве 9.012											D 10.8	1 12.01	1N 14.01	16.00	F 19.00	20.18
11	12											13	1 12.01	14.01	16	17.00	18
SODIUM	MAGNESIUM											ALUMIN	UM SILICON	PHOSPHORUS	SULFUR	L / CHLORINE	ARGON
Na	Mg											A	Si	P	S	Cl	Ar
22.99	24.31	0.1		22	0.1	0.5	26	27	20	20	20	26.9	8 28.09	30.97	32.07	35.45	39.95
19 potassium	20 CALCIUM	21 SCANDIUM	22 TITANIUM	23 vanadium	24 CHROMIUM	25 manganese	26 IRON	27 COBALT	28 NICKEL	29 COPPER) 31 GALLI	M GERMANIU	ARSENIC	34 selenium	35 BROMINE	36 KRYPTON
K	Ca	Sc	Ti	\mathbf{V}	Cr	Mn	Fe	Со	Ni	Cu	Zı	ı Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.3	69.7	2 72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	8 49	50	51	52	53	54
Rb	Sr	Y	Zr	Nome	MOLTADENOM	Тс	Ru	Rh	Pd	Ag	C	l In	Sn	Sb	Те	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	[98.91]	101.07	102.91	106.4	107.87	112.	40 114.	32 118.69	121.75	127.60	126.90	131.30
55	56	57-71	72	73	74	75	76	77	78	79	80) 81	82	83	84	85	86
CAESIUM	BARIUM R 9		HAFNIUM HIF	TANTALUM Ta	TUNGSTEN	RHENIUM		IRIDIUM Tr	PLATINUM Df		MERCU	RY THALLI	IM LEAD	візмитн Ві	POLONIUM	ASTATINE A t	RADON Rn
132.91	137.34		178.49	180.95	183.85	186.2	190.2	192.22	195.09	196.97	200.	59 204.	37 207.2	208.98	[210.0]	[210.0]	[222.0]
87	88	89-103	104	105	106	107	108	109	110	111							
FRANCIUM			RUTHERFORDIUM		SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM		ROENTGENIUM							
FF [223.0]	Ka [226.0]		KI [261]	D0 [262]	5g	DII [262]	ПS [265]	1 VII [266]	DS [271]	Kg							
[225.0]	[220.0]		[201]	[202]	[200]	[202]	[205]	[200]	[2/1]	[2/2]							
	57	/ 5	8	59	60	61	62	63	64	64	5	66	67	68	69	70	71
LANTHANO	D LANTHA	NUM CEF	RIUM PRA	SEODYMIUM	NEODYMIUM	PROMETHIUM	SAMARIUM	EUROPIUM	GADOLINI	UM TERBI	UM	DYSPROSIUM	HOLMIUM	ERBIUM	THULIUM	YTTERBIUM	/ 1 LUTETIUM
S	La		Ce	Pr	Nd	Pm	Sm	Eu	Gd		b	Dy	Ho	Er	Tm	Yb	Lu
	138.	91 140	0.12 1	40.91	144.24	[144.9]	150.4	151.96	157.2	5 158.	.93	162.50	164.93	167.26	168.93	1/3.04	1/4.9/
ACTINOIDS		им Тно	RIUM PRO	91 tactinium	92 uranium	93 NEPTUNIUM	94 plutonium	95 AMERICIUM	96 CURIUM	9 J BERKEL	/ LIUM	98 californium	99 Einsteinium	1 UU FERMIUM	IUI MENDELEVIUM	102 NOBELIUM	1U3 LAWRENCIUM
ACTINOID.	Á A	e T	`h	Pa	U	Np	Pu	Am	Cm	B	k	Cf	Es	Fm	Md	No	Lr
	[227	.0] 232	2.04 [2	231.0]	238.03	[237.0]	[239.1]	[243.1]	[247.]	[247	.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS

November 2009